If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x-18000=0
a = 1; b = 30; c = -18000;
Δ = b2-4ac
Δ = 302-4·1·(-18000)
Δ = 72900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{72900}=270$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-270}{2*1}=\frac{-300}{2} =-150 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+270}{2*1}=\frac{240}{2} =120 $
| x^2+3x-18000=0 | | (x+1)2=(x-3) | | 3(10x+1)÷2=6 | | X2+3√x-7=0 | | t2-9t=-14 | | X2+3√X-7=o | | 14=-5+n/7 | | 32/4=b-4/3 | | -7=7x-10 | | 2x^2=208 | | 2xx(4x-5)=0 | | 6p=9p-7=8p-3+2p | | (9x+25)=79 | | 2f+7=12 | | 5x-x2-4=0 | | 5x=-x2-4 | | 8x+5=-6+6x+25 | | 3x+27x-9=6(5x+9) | | 2x+1÷15=1 | | 220+0.25n=400 | | 3t-5=27 | | x+1÷3-x+2÷5=1 | | (12x-22)=(10x-6) | | 1.2^x=100 | | x/2-6=24 | | 5/7-(2x)=0 | | 0=-3x^2+14x+7 | | 35x-500=55 | | -2n+2n=2 | | 3y/15=0 | | 3-√a=5.3 | | 7=84n |